Improving security in IoT-based human activity recognition: a correlation-based anomaly detection approach

Anomaly detection in Human Activity Recognition (HAR) is a critical subfield that leverages data from the Internet of Things (IoT) to monitor human activities and detect errors or abnormal events. Conventional rule-based approaches often fail to capture the intricate relationships between sensor val...

全面介紹

Saved in:
書目詳細資料
Main Authors: Fan, Jiani, Liu, Ziyao, Du, Hongyang, Kang, Jiawen, Niyato, Dusit, Lam, Kwok-Yan
其他作者: College of Computing and Data Science
格式: Article
語言:English
出版: 2025
主題:
在線閱讀:https://hdl.handle.net/10356/182538
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English