Data augmentation for AI classification in EEG-based motor imagery
Electroencephalography (EEG) classification for motor imagery can be challenging with consumer-grade devices such as the Emotiv headset, where data quality and sample size are limited. In this study, nine different augmentation methods (Rotation, Mixup, Random Time Shift, Frequency-Domain Augmentati...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/183540 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|