Unsupervised learning of phase transition in quantum spin model
This report investigates the application of unsupervised learning techniques to detect phase transitions in quantum spin systems, focusing on the 2D and 3D Ising models. Using Monte Carlo simulations, we generate spin configurations and apply Principal Component Analysis (PCA), autoencoders, and...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/184488 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|