Electrical, optical and far-field measurement of semiconductor light sources

In this report, we will touch on the characteristics of semiconductor laser devices, namely, their fundamental operations, implementations, background theories, requirements of semiconductor lasers and some useful equations. We will also discuss on the characteristics, advantages, applications and p...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Liu, Wei Feng.
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: Final Year Project
اللغة:English
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/46314
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
id sg-ntu-dr.10356-46314
record_format dspace
spelling sg-ntu-dr.10356-463142023-07-07T17:11:23Z Electrical, optical and far-field measurement of semiconductor light sources Liu, Wei Feng. School of Electrical and Electronic Engineering Wang Qi Jie DRNTU::Engineering::Electrical and electronic engineering::Semiconductors In this report, we will touch on the characteristics of semiconductor laser devices, namely, their fundamental operations, implementations, background theories, requirements of semiconductor lasers and some useful equations. We will also discuss on the characteristics, advantages, applications and power description of a Quantam Cascade Laser (QCL) device. Finally we will discuss on the optimization of strain-balanced QCL structure (QCL design) and high power QCL performance improvement. In the QCL performance improvement section we will discuss on the ways of how the QCL device performance can be optimized by removing the thermal energy from the QCL device active region through the optimizations of a strain-balanced QCL structure and through butterfly package. This optimizations method allows the efficiency of the package to improve by 90% as compared to existing similar schemes. Also we aim to build a far-field measurement setup to characterize novel semiconductor device light source that emits light in the far infrared region, around 5um. These products should be accurate, user-friendly and durable. Recommendations on future developments will also be highlighted. Bachelor of Engineering 2011-11-30T02:49:35Z 2011-11-30T02:49:35Z 2011 2011 Final Year Project (FYP) http://hdl.handle.net/10356/46314 en Nanyang Technological University 80 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Semiconductors
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Semiconductors
Liu, Wei Feng.
Electrical, optical and far-field measurement of semiconductor light sources
description In this report, we will touch on the characteristics of semiconductor laser devices, namely, their fundamental operations, implementations, background theories, requirements of semiconductor lasers and some useful equations. We will also discuss on the characteristics, advantages, applications and power description of a Quantam Cascade Laser (QCL) device. Finally we will discuss on the optimization of strain-balanced QCL structure (QCL design) and high power QCL performance improvement. In the QCL performance improvement section we will discuss on the ways of how the QCL device performance can be optimized by removing the thermal energy from the QCL device active region through the optimizations of a strain-balanced QCL structure and through butterfly package. This optimizations method allows the efficiency of the package to improve by 90% as compared to existing similar schemes. Also we aim to build a far-field measurement setup to characterize novel semiconductor device light source that emits light in the far infrared region, around 5um. These products should be accurate, user-friendly and durable. Recommendations on future developments will also be highlighted.
author2 School of Electrical and Electronic Engineering
author_facet School of Electrical and Electronic Engineering
Liu, Wei Feng.
format Final Year Project
author Liu, Wei Feng.
author_sort Liu, Wei Feng.
title Electrical, optical and far-field measurement of semiconductor light sources
title_short Electrical, optical and far-field measurement of semiconductor light sources
title_full Electrical, optical and far-field measurement of semiconductor light sources
title_fullStr Electrical, optical and far-field measurement of semiconductor light sources
title_full_unstemmed Electrical, optical and far-field measurement of semiconductor light sources
title_sort electrical, optical and far-field measurement of semiconductor light sources
publishDate 2011
url http://hdl.handle.net/10356/46314
_version_ 1772825288205402112