The rational eigenfunctions of the hecke operator up

We study the Hecke operator U_p on rational functions. As results, we obtain an explicit description of the rational eigenfunctions of the Hecke operator U_p. In this thesis, we extend the vector space of rational functions from real to complex, that is, the Taylor coefficients of rational functions...

全面介紹

Saved in:
書目詳細資料
主要作者: Pan, Ying
其他作者: Sinai Robins
格式: Theses and Dissertations
語言:English
出版: 2013
主題:
在線閱讀:http://hdl.handle.net/10356/53519
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:We study the Hecke operator U_p on rational functions. As results, we obtain an explicit description of the rational eigenfunctions of the Hecke operator U_p. In this thesis, we extend the vector space of rational functions from real to complex, that is, the Taylor coefficients of rational functions are complex numbers. We have proved the generalized Spectral Theorem. Based on the Structure Theorem, we have proved a theorem which provides an explicit form of rational eigenfunctions of Up. Moreover, for the vector space of rational eigenfunctions for any fixed eigenvalue p^k, we find the basis for the Taylor coefficients whose generating functions are eigenfunctions. In short, we have determined the spectrum of eigenvalues and the explicit form of corresponding eigenfunctions of Hecke operator Up.