Systems-level characterization and transporter engineering in Saccharomyces cerevisiae for improved hydrocarbon tolerance

Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity...

全面介紹

Saved in:
書目詳細資料
主要作者: Chen, Binbin
其他作者: Chang Wook, Matthew
格式: Theses and Dissertations
語言:English
出版: 2014
主題:
在線閱讀:https://hdl.handle.net/10356/61731
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts. Based on these mechanisms, we can further develop microbial host strains with improved tolerance against alkanes. Therefore, in this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by investigating and exploiting cellular mechanisms underlying alkane toxicity. To this end, we first investigated the mechanisms of cellular response to alkane biofuels at a system level through transcriptome analyses. Transciptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as membrane transporters, membrane modification, radical detoxification and energy supply. Among these hypothesized mechanisms, we were interested in identifying plasma membrane transporters which possibly aid in alkane secretion, leading to improved tolerance. In support of this hypothesis, we then expressed the hypothesized native transporters and demonstrated that the expression of transporters - SNQ2 or PDR5 significantly improved cell tolerance against decane (C10) and undecane (C11) through maintaining lower intracellular alkane level. Other than native transporters, we further explored novel alkane transporters from oleaginous yeast Yarrowia lipolytica based on the observation that it utilizes alkanes as a carbon source. Similarly, the expression of identified heterologous transporters – ABC2 or ABC3 resulted in improved cell tolerance against decane (C10) and undecane (C11). Here, we demonstrated that transporter engineering - identification and expression of native and heterologous transporters led to significantly improved tolerance against alkane biofuels in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for highly efficient alkane biofuel production.