Investigations into separable geodesics and embedding diagrams for wormholes

This thesis aims to find analytical solutions for geodesics (especially non-equatorial ones) of rotating traversable wormholes and study the features of such wormholes. We are motivated by Teo’s work which gives the canonical form of the metric for the rotating traversable wormholes and shows intere...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Chen, Peng Hua
مؤلفون آخرون: Leek Meng Lee
التنسيق: Final Year Project
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/63137
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This thesis aims to find analytical solutions for geodesics (especially non-equatorial ones) of rotating traversable wormholes and study the features of such wormholes. We are motivated by Teo’s work which gives the canonical form of the metric for the rotating traversable wormholes and shows interesting features of such wormholes. But Teo did not give the analytical solutions for non-equatorial geodesics of such wormholes. We follow Carter’s approach using the Hamilton-Jacobi method to find the analytical solutions for the geodesics. However it turns out that the geodesics of such wormholes do not have analytical solutions in general. Instead, we construct a slowly rotating wormhole from the canonical form and solve it analytically. In addition, we study and compare the features of different wormholes, especially embedding diagrams, exotic matter and Carter constant for each of them.