Study of the classification in the subspace of the asymmetric principle component analysis

My dissertation mainly studies the process of principal component analysis method which widely used for pattern classification. Besides, it analyses the problems of principal component analysis method when the training data are unbalance. A new method called asymmetric principal component a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Gao, Li
مؤلفون آخرون: Jiang Xudong
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/64992
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:My dissertation mainly studies the process of principal component analysis method which widely used for pattern classification. Besides, it analyses the problems of principal component analysis method when the training data are unbalance. A new method called asymmetric principal component analysis (APCA) is used to remove the less reliable dimensions to help boost the classification accuracy. When dealing with a two-class classification problem, the discriminant analysis in the APCA subspace is used to adjust the eigenvalues so that we can produce more discriminative and reliable features for the asymmetric classes training data. We have compared this approach with other approaches. The experimental results show the highest accuracy among other approaches. We further find out that the optimal weight factor of different type of training classes have some relationship with the distribution of the training data.