Mining social media data

In recent years, there have been a huge growth in the use of social media. Despite the huge amount of social media data available, they are still not fully utilised. Hence, there is a need for social media mining to find patterns and make sense of the data available. This study sought to predi...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Teo, Kelvin Mo Sheng
مؤلفون آخرون: Ke Yiping, Kelly
التنسيق: Final Year Project
اللغة:English
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/66709
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In recent years, there have been a huge growth in the use of social media. Despite the huge amount of social media data available, they are still not fully utilised. Hence, there is a need for social media mining to find patterns and make sense of the data available. This study sought to predict popular topics by examining them on Twitter over a time-window of 7 days. Through the application of three classification algorithms, namely, Decision Tree Classifiers, Naïve Bayes Classifiers and Support Vector Machines, and compare the performance of these three classification algorithms to find the most effective algorithm for mining two different types of class labels, Absolute and Relative Addressing. The results obtained showed that Support Vector Machines produced more accurate results while taking a substantial amount of time to process. Decision Tree Classifiers, on the other hand, took a much shorter time to process, but still able to predict with only a slightly lower accuracy than Support Vector Machines. Therefore, mining Twitter data prove to be useful in predicting popular topics, and mining social media data can be an effective method for commercial purposes. While this study focuses only on three classification algorithms and one data set with two types of class labels, further studies on other social media, algorithms and more data sets can be done in order to provide more accurate and comprehensive findings.