Using a machine learning approach for property market analysis

This report aims to predict the property market trend for Singapore and Hong Kong with Python and some packages including pandas and scikit-learn. A machine learning approach was applied to perform the predictions with three regression models selected. Raw data was collected from the region or count...

全面介紹

Saved in:
書目詳細資料
主要作者: Xu, Mengxing
其他作者: Kong Wai-Kin Adams
格式: Final Year Project
語言:English
出版: 2016
主題:
在線閱讀:http://hdl.handle.net/10356/67393
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This report aims to predict the property market trend for Singapore and Hong Kong with Python and some packages including pandas and scikit-learn. A machine learning approach was applied to perform the predictions with three regression models selected. Raw data was collected from the region or country’s corresponding government website. Before performing the training and testing using regression models, the raw data went through data cleaning and preprocessing. In the end, the predictions with regression models were conducted. Linear regression fit the Hong Kong property market best, while the K-Nearest Neighbors with k equals 3 performs best in Singapore property market. However, the future trend for both markets cannot be obtained due to the lack of latest data for some macroeconomic factors.