Automatic image cropping with Faster_RCNN

Convolutional Neural Networks have been proven useful in many computer vision tasks such as image classification and object detection. On the other hand, automatic image cropping remains a challenging task given its subjective nature. This project explored the performance of an object detection meth...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Vu, Ha Son
مؤلفون آخرون: Chia Liang Tien
التنسيق: Final Year Project
اللغة:English
منشور في: 2017
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/72799
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Convolutional Neural Networks have been proven useful in many computer vision tasks such as image classification and object detection. On the other hand, automatic image cropping remains a challenging task given its subjective nature. This project explored the performance of an object detection method, Faster R-CNN, in doing automatic image cropping task to enhance image composition. The focus of the study is on three common compositional rules: Leading Lines, Space-to-move and Symmetry/Reflection. The final model was subsequently used to build a web application that helped inexperienced photographers to do cropping to enhance their image composition according to the three chosen rules.