A study on augmented Lagrangian-based splitting methods for separable convex programming
Convex programming has played an important role in studying a wide class of applications arising from computer science, statistics, industrial engineering, and management. Moreover, the advent of big-data analytics has resulted in very large-scale structural convex programming problems, thereby nece...
Saved in:
主要作者: | Wang, Kai |
---|---|
其他作者: | Jitamitra Desai |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2017
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/73066 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
A Two-Phase Augmented Lagrangian Method For Convex Composite Quadratic Programming
由: LI XUDONG
出版: (2015) -
AUGMENTED LAGRANGIAN BASED ALGORITHMS FOR CONVEX OPTIMIZATION PROBLEMS WITH NON-SEPARABLE L1-REGULARIZATION
由: GONG ZHENG
出版: (2013) -
Lagrangian relaxation for large-scale multi-agent planning
由: GORDON, Geoff, et al.
出版: (2012) -
Lagrangian relaxation for large-scale multi-agent planning
由: GORDON, Geoff, et al.
出版: (2012) -
An inexact spectral bundle method and error bounds for convex quadratic symmetric cone programming
由: Lin, Hui Ling
出版: (2012)