Privacy-preserving analytics : secure logistic regression

Much data and information have been collected about us from all aspects of our life. Sometimes, we need to do analysis on this data without violating the privacy of individuals. In this project, we present a cryptographic library that can be used to do logistic regression under encrypted data. The e...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Djonatan, Prabowo
مؤلفون آخرون: Ng Wee Keong
التنسيق: Final Year Project
اللغة:English
منشور في: 2019
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/77126
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Much data and information have been collected about us from all aspects of our life. Sometimes, we need to do analysis on this data without violating the privacy of individuals. In this project, we present a cryptographic library that can be used to do logistic regression under encrypted data. The encryption scheme used is a multiparty computation based on Exponential ElGamal. A special type of multiplication gate, the conditional gate, helps in the realization of the library. An implementation of the library usage on predicting the severity of heart disease based on the encrypted patient’s attributes is also presented along this project.