Intelligent indoor localization based on RF signals

In recent years, localization using RF signal in existing communication network or with limited infrastructure is studied extensively. As WiFi and other RF devices have been widely deployed in buildings, it is natural to use them for localization as well. In this project, machine learning and data...

全面介紹

Saved in:
書目詳細資料
主要作者: Qi, Jingya
其他作者: Lin Zhiping
格式: Final Year Project
語言:English
出版: 2019
主題:
在線閱讀:http://hdl.handle.net/10356/77255
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In recent years, localization using RF signal in existing communication network or with limited infrastructure is studied extensively. As WiFi and other RF devices have been widely deployed in buildings, it is natural to use them for localization as well. In this project, machine learning and data analytics will be studied to improve indoor localization accuracy based on radio frequency (RF) signals. Currently, some relevant researches have been conducted on dataset including Received signal strength indication (RSSI) features or Channel State Information (CSI) using Support Vector Machine, neural network and K-nearest neighbors (KNN) method. In this project, 2 datasets have been implemented using SVM. Most of the work is focusing on UJIIndoorLoc dataset, training, testing results as well as the analysis of the results will be included.