Design and analysis of a three-phase interleaved DC-DC converter

Recently, next-generation electrical grid, smart grid has drawn much attention in both academia and industry. The high-level utilization of renewable resources and energy storage system in smart grid challenges conventional converter topologies and calls for bidirectional converters. As a result, a...

全面介紹

Saved in:
書目詳細資料
主要作者: Huang, Huizhen
其他作者: Tang Yi
格式: Theses and Dissertations
語言:English
出版: 2019
主題:
在線閱讀:http://hdl.handle.net/10356/78438
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Recently, next-generation electrical grid, smart grid has drawn much attention in both academia and industry. The high-level utilization of renewable resources and energy storage system in smart grid challenges conventional converter topologies and calls for bidirectional converters. As a result, a multi-phase DC-DC interleaved converter that allows bidirectional power flow has been developed. Another feature of the interleaved DC-DC converter is the reduction of the current ripple, which is achieved by proper phase-shifting. In this dissertation, a three-phase interleaved DC-DC converter is designed and analyzed for microgrid application. This converter topology is derived from traditional single-phase boost converter. All parameters design and components selection are presented. Dual-loop control design for voltage regulation mode (VRM) is introduced as well. The proposed design is implemented using the software simulations and is compared with the results that were obtained experimentally.