Wind/solar power forecasting using improved LSTM neural networks
Nowadays, new energy become more and more important not only for industry but also for our citizens. How to forecast the wind and solar power correctly is also necessary for power plant. In this dissertation, four kinds of forecasting system based respectively on NARX model, BP neural network model,...
Saved in:
主要作者: | Liu, Shixian |
---|---|
其他作者: | Ponnuthurai N. Suganthan |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/78572 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Forecasting of solar radiation using fuzzy neural networks
由: Seng, Anthony Sunjaya.
出版: (2012) -
Short-term residential load forecasting based on LSTM recurrent neural network
由: Kong, Weicong, et al.
出版: (2021) -
Solar PV parameter forecast using generalized neural networks
由: Ong, Pei Qi
出版: (2023) -
Solar power forecasting using sky imagers
由: Tan, Justine Choon Ping
出版: (2014) -
Smart electronic skin having gesture recognition function by LSTM neural network
由: Chen, Teng Peng, et al.
出版: (2019)