Robust real-time route inference from sparse vehicle position data
The ability to correctly infer the route traveled by vehicles in real time from infrequent, noisy observations of their position is useful for several traffic management applications. This task, known as map matching, is efficiently performed through probabilistic inference on a Hidden Markov Model...
محفوظ في:
المؤلفون الرئيسيون: | Jagadeesh, George Rosario, Srikanthan, Thambipillai |
---|---|
مؤلفون آخرون: | School of Computer Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/79437 http://hdl.handle.net/10220/25599 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Online map-matching of noisy and sparse location data with hidden Markov and route choice models
بواسطة: Jagadeesh, George Rosario, وآخرون
منشور في: (2020) -
Probabilistic map matching of sparse and noisy smartphone location data
بواسطة: Jagadeesh, George Rosario, وآخرون
منشور في: (2021) -
A map matching method for GPS based real-time vehicle location
بواسطة: Jagadeesh, G.R., وآخرون
منشور في: (2014) -
Heuristic optimizations for high-speed low-latency online map matching with probabilistic sequence models
بواسطة: Jagadeesh, George Rosario, وآخرون
منشور في: (2021) -
Fast computation of clustered many-to-many shortest paths and its application to map matching
بواسطة: Jagadeesh, George Rosario, وآخرون
منشور في: (2020)