Shaw, C. B., Prakash, J., Pramanik, M., Yalavarthy, P. K., & Engineering, S. o. C. a. B. (2014). Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography.
Chicago Style CitationShaw, Calvin B., Jaya Prakash, Manojit Pramanik, Phaneendra K. Yalavarthy, and School of Chemical and Biomedical Engineering. Least Squares QR-based Decomposition Provides an Efficient Way of Computing Optimal Regularization Parameter in Photoacoustic Tomography. 2014.
MLA CitationShaw, Calvin B., et al. Least Squares QR-based Decomposition Provides an Efficient Way of Computing Optimal Regularization Parameter in Photoacoustic Tomography. 2014.
Warning: These citations may not always be 100% accurate.