Shaw, C. B., Prakash, J., Pramanik, M., Yalavarthy, P. K., & Engineering, S. o. C. a. B. (2014). Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography.
Chicago Style CitationShaw, Calvin B., Jaya Prakash, Manojit Pramanik, Phaneendra K. Yalavarthy, and School of Chemical and Biomedical Engineering. Least Squares QR-based Decomposition Provides an Efficient Way of Computing Optimal Regularization Parameter in Photoacoustic Tomography. 2014.
MLA引文Shaw, Calvin B., et al. Least Squares QR-based Decomposition Provides an Efficient Way of Computing Optimal Regularization Parameter in Photoacoustic Tomography. 2014.
警告:這些引文格式不一定是100%准確.