Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating

Multiwalled carbon nanotubes are incorporated into the silane coating on fiber surface to enhance the interfacial bonding of carbon fiber reinforced epoxy composite. The results of microbond tests show that the interfacial shear strength of the prepared hybrid composites can be significantly increas...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Yu, Bin, Jiang, Zhenyu, Tang, Xiu-Zhi, Yue, Chee Yoon, Yang, Jinglei
مؤلفون آخرون: School of Mechanical and Aerospace Engineering
التنسيق: مقال
اللغة:English
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/81629
http://hdl.handle.net/10220/40885
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Multiwalled carbon nanotubes are incorporated into the silane coating on fiber surface to enhance the interfacial bonding of carbon fiber reinforced epoxy composite. The results of microbond tests show that the interfacial shear strength of the prepared hybrid composites can be significantly increased by up to 26.3% compared with that of common composite. In contrast, the addition of carbon nanotubes into epoxy matrix demonstrates a distinctly weaker effect on enhancing the interphase between neat silane coated carbon fiber and matrix. This discrepancy can be attributed to the densification of CNT forest within the interphase during the forming of nanocomposite coating. Based on our experimental study, the carbon nanotube-based modification of silane coating on fiber surface is considered as a more efficient approach than the widely reported carbon nanotube-based tuning of matrix for hybrid composites, at the aspects of reinforcing effect, cost saving and process complexity.