Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks
Decision fusion for distributed detection in sensor networks under non-ideal channels is investigated in this paper. Usually, the local decisions are transmitted to the fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision. We propose an optimal likelihood ra...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/81864 http://hdl.handle.net/10220/39684 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Decision fusion for distributed detection in sensor networks under non-ideal channels is investigated in this paper. Usually, the local decisions are transmitted to the fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision. We propose an optimal likelihood ratio test (LRT)-based fusion rule to take the uncertainty of the decoded binary data due to modulation, reception mode and communication channel into account. The average bit error rate (BER) is employed to characterize such an uncertainty. Further, the detection performance is analyzed under both non-identical and identical local detection performance indices. In addition, the performance of the proposed method is compared with the existing optimal and suboptimal LRT fusion rules. The results show that the proposed fusion rule is more robust compared to these existing ones. |
---|