Multivariate adaptive regression splines and neural network models for prediction of pile drivability
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to chec...
Saved in:
Main Authors: | Zhang, Wengang, Goh, Anthony Tech Chee |
---|---|
其他作者: | School of Civil and Environmental Engineering |
格式: | Article |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/82347 http://hdl.handle.net/10220/39982 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Multivariate adaptive regression splines and neural network models for prediction of pile drivability
由: Zhang, Wengang, et al.
出版: (2015) -
Nonlinear structural modeling using multivariate adaptive regression splines
由: Zhang, Wengang, et al.
出版: (2016) -
Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression
由: Zhang, Wengang, et al.
出版: (2018) -
Multivariate adaptive regression splines approach to estimate lateral wall deflection profiles caused by braced excavations in clays
由: Zhang, Wengang, et al.
出版: (2019) -
Toward identifying the source of mean shifts in multivariate SPC: A neural network approach
由: Hwarng, H.B.
出版: (2013)