Edge-dominating cycles, k-walks and Hamilton prisms in 2K2-free graphs

We show that an edge-dominating cycle in a 2K22K2-free graph can be found in polynomial time; this implies that every 1k−11k−1-tough 2K22K2-free graph admits a kk-walk, and it can be found in polynomial time. For this class of graphs, this proves a long-standing conjecture due to Jackson and Wormald...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Mou, Gao, Pasechnik, Dmitrii V.
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2017
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/83360
http://hdl.handle.net/10220/42557
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We show that an edge-dominating cycle in a 2K22K2-free graph can be found in polynomial time; this implies that every 1k−11k−1-tough 2K22K2-free graph admits a kk-walk, and it can be found in polynomial time. For this class of graphs, this proves a long-standing conjecture due to Jackson and Wormald [kk-walks of graphs, Australas. J. Combin. 2 (1990) 135–146]. Furthermore, we prove that for any ϵ>0ϵ>0 every (1+ϵ)(1+ϵ)-tough 2K22K2-free graph is prism-Hamiltonian and give an effective construction of a Hamiltonian cycle in the corresponding prism, along with few other similar results.