Theta products and eta quotients of level 24 and weight 2

We find bases for the spaces M2(Γ0(24),(d⋅))M2(Γ0(24),(d⋅)) (d=1,8,12,24d=1,8,12,24) of modular forms. We determine the Fourier coefficients of all 3535 theta products φ[a1,a2,a3,a4](z)φ[a1,a2,a3,a4](z) in these spaces. We then deduce formulas for the number of representations of a positive integer...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Alaca, Ayşe, Alaca, Şaban, Aygin, Zafer Selcuk
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2017
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/84889
http://hdl.handle.net/10220/43604
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:We find bases for the spaces M2(Γ0(24),(d⋅))M2(Γ0(24),(d⋅)) (d=1,8,12,24d=1,8,12,24) of modular forms. We determine the Fourier coefficients of all 3535 theta products φ[a1,a2,a3,a4](z)φ[a1,a2,a3,a4](z) in these spaces. We then deduce formulas for the number of representations of a positive integer nn by diagonal quaternary quadratic forms with coefficients 11, 22, 33 or 66 in a uniform manner, of which 1414 are Ramanujan's universal quaternary quadratic forms. We also find all the eta quotients in the Eisenstein spaces E2(Γ0(24),(d⋅))E2(Γ0(24),(d⋅)) (d=1,8,12,24d=1,8,12,24) and give their Fourier coefficients.