A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting
The design of cheap and efficient water splitting systems for sustainable hydrogen production has attracted increasing attention. A flexible electrode, based on carbon cloth substrate and iron phosphide nanotubes coated with an iron oxide/phosphate layer, is shown to catalyze overall water splitting...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/84890 http://hdl.handle.net/10220/43603 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | The design of cheap and efficient water splitting systems for sustainable hydrogen production has attracted increasing attention. A flexible electrode, based on carbon cloth substrate and iron phosphide nanotubes coated with an iron oxide/phosphate layer, is shown to catalyze overall water splitting. The as-prepared flexible electrode demonstrates remarkable electrocatalytic activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at modest overpotentials. The surface iron oxide/phosphate, which is formed in situ, is proposed to improve the HER activity by facilitating the water-dissociation step and serves directly as the catalytically-active component for the OER process. |
---|