A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
The concept of particle swarms originated from the simulation of the social behavior commonly observed in animal kingdom and evolved into a very simple but efficient technique for optimization in recent past. Since its advent in 1995, the Particle Swarm Optimization (PSO) algorithm has attracted the...
محفوظ في:
المؤلفون الرئيسيون: | Nasir, Md., Das, Swagatam., Maity, Dipankar., Sengupta, Soumyadip., Halder, Udit., Suganthan, P. N. |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/85065 http://hdl.handle.net/10220/13556 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Novel particle swarm optimizers with hybrid, dynamic and adaptive neighborhood structures
بواسطة: Liang, Jing
منشور في: (2010) -
Dynamic multi-swarm particle swarm optimization for multi-objective optimization problems
بواسطة: Niu, B., وآخرون
منشور في: (2013) -
Niching particle swarm optimization with local search for multi-modal optimization
بواسطة: Qu, B. Y., وآخرون
منشور في: (2013) -
An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
بواسطة: Suganthan, P. N., وآخرون
منشور في: (2013) -
Population topologies for particle swarm optimization and differential evolution
بواسطة: Lynn, Nandar, وآخرون
منشور في: (2020)