Time-consistent mean-variance portfolio selection with only risky assets

Time consistency and optimal diversification criteria are popular in the dynamic portfolio construction in practice. This paper is devoted to the exact analytical solution of the time-consistent mean-variance portfolio selection with assets that can be all risky in a continuous-time economy, of whic...

全面介紹

Saved in:
書目詳細資料
主要作者: Pun, Chi Seng
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/85117
http://hdl.handle.net/10220/46283
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Time consistency and optimal diversification criteria are popular in the dynamic portfolio construction in practice. This paper is devoted to the exact analytical solution of the time-consistent mean-variance portfolio selection with assets that can be all risky in a continuous-time economy, of which the time-consistent global minimum-variance portfolio selection is a special case. Our solution generalizes the studies with a risk-free asset in the sense that one of the risky assets can be set as risk-free. By applying the extended dynamic programming, we manage to derive the exact analytical solution of the time-consistent mean-variance strategy with risky assets via the solution of an Abel differential equation. To stabilize the solution, we derive an analytical expansion for the Abel differential equation with any desired accuracy. In addition, we derive the statistical properties of the optimal strategy and prove a separation theorem. Moreover, we establish the links of time-consistent strategy with pre-commitment and myopic strategies and investigate the curse of dimensionality on the time-consistent strategies. We show that under the low-dimensional setting, the intertemporal hedging demands are significant; however, under the high-dimensional setting, the time-consistent strategies are approximately equivalent to myopic strategies, in the presence of estimation risk. Empirical studies are conducted to illustrate and verify our results.