A deep learning approach to image quality assessment
Deep convolutional neural networks (DCNNs) have an unchallengeable performance advantage over traditional machine learning in solving visual problems. However, DCNNs are vulnerable when the input signals are distorted or manipulated maliciously. We explore the computational modeling of image quality...
Saved in:
主要作者: | Feng, Yeli |
---|---|
其他作者: | Cai Yiyu |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/85493 http://hdl.handle.net/10220/50465 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Using deep learning for quality control in cyber-manufacturing
由: Dai, Wenting
出版: (2022) -
Fine-grained image classification using deep learning
由: Sun, Deguang
出版: (2022) -
Deep learning approach for detection of melanoma from skin lesion images
由: Ku, Hui Sien
出版: (2019) -
Photorealistic stylised image quality assessment database (PSIQAD) building and modelling
由: Low, Qing Ru
出版: (2020) -
Image quality assessment based label smoothing in deep neural network learning
由: Chen, Zhou
出版: (2018)