Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies

Dispersion and spatial distribution of graphene sheets play crucial roles in tailoring mechanical and functional properties of their polymer composites. Anisotropic graphene aerogels (AGAs) with highly aligned graphene networks are prepared by a directional-freezing followed by freeze-drying process...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Xing-Hua, Li, Xiaofeng, Liao, Kai-Ning, Min, Peng, Liu, Tao, Dasari, Aravind, Yu, Zhong-Zhen
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/85721
http://hdl.handle.net/10220/43806
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Dispersion and spatial distribution of graphene sheets play crucial roles in tailoring mechanical and functional properties of their polymer composites. Anisotropic graphene aerogels (AGAs) with highly aligned graphene networks are prepared by a directional-freezing followed by freeze-drying process and exhibit different microstructures and performances along the axial (freezing direction) and radial (perpendicular to the axial direction) directions. Thermal annealing at 1300 °C significantly enhances the quality of both AGAs and conventional graphene aerogels (GAs). The aligned graphene/epoxy composites show highly anisotropic mechanical and electrical properties and excellent electromagnetic interference (EMI) shielding efficiencies at very low graphene loadings. Compared to the epoxy composite with 0.8 wt % thermally annealed GAs (TGAs) with an EMI shielding effectiveness of 27 dB, the aligned graphene/epoxy composite with 0.8 wt % thermally treated AGAs (TAGAs) has an enhanced EMI shielding effectiveness of 32 dB along the radial direction with a slightly decreased shielding effectiveness of 25 dB along the axial direction. With 0.2 wt % TAGA, its epoxy composite exhibits a shielding effectiveness of 25 dB along the radial direction, which meets the requirement of ∼20 dB for practical EMI shielding applications.