SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning
In this paper, a novel synthetic aperture radar (SAR) ground moving target imaging (GMTIm) algorithm is presented within a parametric and dynamic sparse Bayesian learning (SBL) framework. A new time-frequency representation, which is known as Lv's distribution (LVD), is employed on the moving t...
محفوظ في:
المؤلفون الرئيسيون: | Yang, Lei, Zhao, Lifan, Bi, Guoan, Zhang, Liren |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/86047 http://hdl.handle.net/10220/43922 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Airborne SAR Moving Target Signatures and Imagery Based on LVD
بواسطة: Yang, Lei, وآخرون
منشور في: (2016) -
Ground moving target imaging by synthetic aperture radar based on an unified framework of keystone transformation
بواسطة: Yang, Lei, وآخرون
منشور في: (2016) -
Three-dimensional SAR imaging of a ground moving target using the InISAR technique
بواسطة: Zhang, Q., وآخرون
منشور في: (2014) -
Robust clutter suppression and ground moving target imaging method for a multichannel sar with high-squint angle mounted on hypersonic vehicle
بواسطة: Han, Jiusheng, وآخرون
منشور في: (2022) -
An accurate imaging and doppler chirp rate estimation algorithm for airborne CSSAR-GMTI systems
بواسطة: Li, Yongkang, وآخرون
منشور في: (2021)