3D neural tissue models : from spheroids to bioprinting

Three-dimensional (3D) in vitro neural tissue models provide a better recapitulation of in vivo cell-cell and cell-extracellular matrix interactions than conventional two-dimensional (2D) cultures. Therefore, the former is believed to have great potential for both mechanistic and translational studi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhuang, Pei, Sun, Alfred Xuyang, An, Jia, Chua, Chee Kai, Chew, Sing Yian
其他作者: School of Chemical and Biomedical Engineering
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/86209
http://hdl.handle.net/10220/46697
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Three-dimensional (3D) in vitro neural tissue models provide a better recapitulation of in vivo cell-cell and cell-extracellular matrix interactions than conventional two-dimensional (2D) cultures. Therefore, the former is believed to have great potential for both mechanistic and translational studies. In this paper, we review the recent developments in 3D in vitro neural tissue models, with a particular focus on the emerging bioprinted tissue structures. We draw on specific examples to describe the merits and limitations of each model, in terms of different applications. Bioprinting offers a revolutionary approach for constructing repeatable and controllable 3D in vitro neural tissues with diverse cell types, complex microscale features and tissue level responses. Further advances in bioprinting research would likely consolidate existing models and generate complex neural tissue structures bearing higher fidelity, which is ultimately useful for probing disease-specific mechanisms, facilitating development of novel therapeutics and promoting neural regeneration.