Using quantum theory to simplify input–output processes

All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems—algorithmic abstractions of their input–output behavior that allow us to simulate...

全面介紹

Saved in:
書目詳細資料
Main Authors: Thompson, Jayne, Garner, Andrew J. P., Vedral, Vlatko, Gu, Mile
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/86645
http://hdl.handle.net/10220/45332
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems—algorithmic abstractions of their input–output behavior that allow us to simulate how such systems can behave in the future, conditioned on what has transpired in the past. Here, we show that classical models cannot avoid inefficiency—storing past information that is unnecessary for correct future simulation. We construct quantum models that mitigate this waste, whenever it is physically possible to do so. This suggests that the complexity of general input–output processes depends fundamentally on what sort of information theory we use to describe them.