Remnant Geometric Hall Response in a Quantum Quench

Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current—a remnant Hall response—even when the instantaneous H...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wilson, Justin H., Song, Justin Chien Wen, Refael, Gil
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2017
主題:
在線閱讀:https://hdl.handle.net/10356/86686
http://hdl.handle.net/10220/44152
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current—a remnant Hall response—even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.