On The Secrecy Gain Of Extremal Even l-modular Lattices

The secrecy gain is a lattice invariant that appears in the context of wiretap lattice coding. It has been studied for unimodular lattices, for 2 −, 3 −, and 5 −modular lattices. This paper studies the secrecy gain for extremal even l-modular lattices, for l ∈ {2, 3, 5, 6, 7, 11, 14, 15, 23}. We com...

全面介紹

Saved in:
書目詳細資料
Main Authors: Oggier, Frédérique, Belfiore, Jean-Claude
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/86844
http://hdl.handle.net/10220/44358
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The secrecy gain is a lattice invariant that appears in the context of wiretap lattice coding. It has been studied for unimodular lattices, for 2 −, 3 −, and 5 −modular lattices. This paper studies the secrecy gain for extremal even l-modular lattices, for l ∈ {2, 3, 5, 6, 7, 11, 14, 15, 23}. We compute the highest secrecy gains as a function of the lattice dimension and the lattice level l. We show in particular that l = 2, 3, 6, 7, 11 are best for the respective ranges of dimensions {80, 76, 72}, {68, 64, 60, 56, 52, 48}, {44, 40, 36}, {34, 32, 30, 28, 26, 24, 22}, {18, 16, 14, 12, 10, 8}. This suggests that within a range of dimensions where different levels exist, the highest value of l tends to give the best secrecy gain. A lower bound computation on the maximal secrecy gain further shows that extremal lattices provide secrecy gains which are very close to this lower bound, thus confirming the good behavior of this class of lattices with respect to the secrecy gain.