The cover number of a matrix and its algorithmic applications

Given a matrix A, we study how many epsilon-cubes are required to cover the convex hull of the columns of A. We show bounds on this cover number in terms of VC dimension and the gamma_2 norm and give algorithms for enumerating elements of a cover. This leads to algorithms for computing approximate N...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Lee, Troy, Alon, Noga, Shraibman, Adi
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/87666
http://hdl.handle.net/10220/46788
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Given a matrix A, we study how many epsilon-cubes are required to cover the convex hull of the columns of A. We show bounds on this cover number in terms of VC dimension and the gamma_2 norm and give algorithms for enumerating elements of a cover. This leads to algorithms for computing approximate Nash equilibria that unify and extend several previous results in the literature. Moreover, our approximation algorithms can be applied quite generally to a family of quadratic optimization problems that also includes finding the k-by-k combinatorial rectangle of a matrix. In particular, for this problem we give the first quasi-polynomial time additive approximation algorithm that works for any matrix A in [0,1]^{m x n}.