Non-abelian representations of some sporadic geometries
For a point-line incidence system S =(P, L) with three points per line we define the universal representation group of S asR(S)= 〈zp, p∈P|zp^2=1 for p∈P,zp zq zr = 1 for {p,q,r} ∈ L〉We prove that if G is the 2-local parabolic geometry of the sporadic simple group F1(the Monster) or F2(the Baby Monst...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2013
|
在線閱讀: | https://hdl.handle.net/10356/87919 http://hdl.handle.net/10220/9446 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | For a point-line incidence system S =(P, L) with three points per line we define the universal representation group of S asR(S)= 〈zp, p∈P|zp^2=1 for p∈P,zp zq zr = 1 for {p,q,r} ∈ L〉We prove that if G is the 2-local parabolic geometry of the sporadic simple group F1(the Monster) or F2(the Baby Monster) thenR(G)≅F1or 2·F2, respectively. |
---|