An Ensemble of Kernel Ridge Regression for Multi-class Classification
We propose an ensemble of kernel ridge regression based classifiers in this paper. Kernel ridge regression admits a closed form solution making it faster to compute and also making it suitable to use for ensemble methods for small and medium sized data sets. Our method uses random vector functional...
Saved in:
Main Authors: | Suganthan, Ponnuthurai Nagaratnam, Rakesh, Katuwal |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2018
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/88058 http://hdl.handle.net/10220/44558 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Short-term electricity price forecasting with empirical mode decomposition based ensemble Kernel machines
由: Qiu, Xueheng, et al.
出版: (2018) -
Adaptive ridge regression system for software cost estimating on multi-collinear datasets
由: Li, Y.-F., et al.
出版: (2014) -
A fast dual algorithm for kernel logistic regression
由: Keerthi, S.S., et al.
出版: (2014) -
Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
由: He, T., et al.
出版: (2021) -
An ensemble of decision trees with random vector functional link networks for multi-class classification
由: Katuwal, Rakesh, et al.
出版: (2020)