Invariance and efficiency of convex representations

We consider two notions for the representations of convex cones: G-representation and lifted-G-representation. The former represents a convex cone as a slice of another; the latter allows in addition, the usage of auxiliary variables in the representation.We first study the basic properties of these...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chua, Chek Beng., Tunçel, Levent.
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2009
主題:
在線閱讀:https://hdl.handle.net/10356/91764
http://hdl.handle.net/10220/4712
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:We consider two notions for the representations of convex cones: G-representation and lifted-G-representation. The former represents a convex cone as a slice of another; the latter allows in addition, the usage of auxiliary variables in the representation.We first study the basic properties of these representations. We show that some basic properties of convex cones are invariant under one notion of representation but not the other. In particular, we prove that lifted-G-representation is closed under duality when the representing cone is self-dual.We also prove that strict mplementarity of a convex optimization problem in conic form is preserved under G-representations. Then we move to study efficiency measures for representations.We evaluate the representations of homogeneous convex cones based on the “smoothness” of the transformations mapping the central path of the representation to the central path of the represented optimization problem.