Facile photochemical synthesis of graphene-Pt nanoparticle composite for counter electrode in dye sensitized solar cell

A low temperature route to synthesize graphene oxide–Pt nanoparticle hybrid composite by light assisted spontaneous coreduction of graphene oxide and chloroplatinic acid without reducing agent is demonstrated. Analysis indicates the importance of light as energy provider and ethanol as hole scavenge...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Tjoa, Verawati, Chua, Julianto, Pramana, Stevin Snellius, Wei, Jun, Mhaisalkar, Subodh Gautam, Mathews, Nripan
مؤلفون آخرون: School of Materials Science & Engineering
التنسيق: مقال
اللغة:English
منشور في: 2013
الوصول للمادة أونلاين:https://hdl.handle.net/10356/96381
http://hdl.handle.net/10220/10278
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:A low temperature route to synthesize graphene oxide–Pt nanoparticle hybrid composite by light assisted spontaneous coreduction of graphene oxide and chloroplatinic acid without reducing agent is demonstrated. Analysis indicates the importance of light as energy provider and ethanol as hole scavenger in the formation of small Pt nanoparticles (3 nm) on graphene oxide as well as graphene oxide reduction. Spray coating was used to deposit the hybrid material as a counter electrode in dye sensitized solar cells (DSCs). An efficiency of 6.77% for the hybrid graphene counter electrode has been obtained, higher than the control device made by low temperature sputtered Pt as counter electrode. Compatibility of the hybrid material with flexible plastic substrates was demonstrated yielding DSCs of an efficiency of 4.05%.