Facile hydrothermal synthesis of novel Cu2O core-shell nanospheres via a template-free route

Novel cuprous oxide Cu2O core-shell nanospheres with diameter around 445 nm have been successfully fabricated by a facile, one-pot and template-free route. The synthesis of these nanospheres is accomplished through a hydrothermal reaction of cupric acetate with o-anisidine as the reducing agent. Bas...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Huijuan, Wong, C. Cheong, Cui, Yuchi
其他作者: School of Materials Science & Engineering
格式: Article
語言:English
出版: 2013
在線閱讀:https://hdl.handle.net/10356/96506
http://hdl.handle.net/10220/17275
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Novel cuprous oxide Cu2O core-shell nanospheres with diameter around 445 nm have been successfully fabricated by a facile, one-pot and template-free route. The synthesis of these nanospheres is accomplished through a hydrothermal reaction of cupric acetate with o-anisidine as the reducing agent. Based on the structural and compositional evolution, the process mechanism was proposed to initiate with the formation of intermediate non-crystalline nanospheres. Subsequent reductive conversion of these intermediates to CuO/Cu2O nanocrystallite aggregates is followed by a spontaneous hollowing process in which core-shell nanospheres form by inside-out Ostwald ripening. The phase purity of the Cu2O can be improved by prolonging the aging time or increasing the starting concentration of o-anisidine. These Cu2O nanospheres have an absorption band within the visible range with a peak at 470 nm and may be potentially applicable for solar energy conversion.