Critical behavior and the absence of glass state in ferromagnetic La0.7Ca0.3CoO3 nanowires
We report a systematic study of the magnetic and thermodynamic properties of uniform La0.7Ca0.3CoO3 nanowires prepared by a hydrothermal method, and compare them with the bulk counterpart. The nanowires, ∼59 nm in diameter, are single crystalline as revealed by electron microscopy. With decreasing t...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2013
|
在線閱讀: | https://hdl.handle.net/10356/96621 http://hdl.handle.net/10220/10366 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | We report a systematic study of the magnetic and thermodynamic properties of uniform La0.7Ca0.3CoO3 nanowires prepared by a hydrothermal method, and compare them with the bulk counterpart. The nanowires, ∼59 nm in diameter, are single crystalline as revealed by electron microscopy. With decreasing temperature, the bulk La0.7Ca0.3CoO3 shows a ferromagnetism followed by a reentrant glass state, whereas the nanowires show only a purely ferromagnetic ground state. The thermopower and specific heat results indicate that there exist enhanced spin and/or orbital fluctuations in the nanowires that could be responsible for the absence of the glass state. Critical behavior analysis shows that the nanowires fall into a three-dimensional Heisenberg ferromagnet class. |
---|