Linear aperiodic array synthesis using an improved genetic algorithm

A novel algorithm on beam pattern synthesis for linear aperiodic arrays with arbitrary geometrical configuration is presented in this paper. Linear aperiodic arrays are attractive for their advantages on higher spatial resolution and lower sidelobe. However, the advantages are attained at the cost o...

全面介紹

Saved in:
書目詳細資料
Main Authors: Cen, Ling, Yu, Zhu Liang, Ser, Wee, Cen, Wei
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/97723
http://hdl.handle.net/10220/11255
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A novel algorithm on beam pattern synthesis for linear aperiodic arrays with arbitrary geometrical configuration is presented in this paper. Linear aperiodic arrays are attractive for their advantages on higher spatial resolution and lower sidelobe. However, the advantages are attained at the cost of solving a complex non-linear optimization problem. In this paper, we explain the Improved Genetic Algorithm (IGA) that simultaneously adjusts the weight coefficients and inter-sensor spacings of a linear aperiodic array in more details and extend the investigations to include the effects of mutual coupling and the sensitivity of the Peak Sidelobe Level (PSL) to steering angles. Numerical results show that the PSL of the synthesized beam pattern has been successfully lowered with the IGA when compared with other techniques published in the literature. In addition, the computational cost of our algorithm can be as low as 10% of that of a recently reported genetic algorithm based synthesis method. The excellent performance of IGA makes it a promising optimization algorithm where expensive cost functions are involved.