A study on like-attracts-like versus elitist selection criterion for human-like social behavior of memetic mulitagent systems

Memetic multi agent system emerges as an enhanced version of multiagent systems with the implementation of meme-inspired computational agents. It aims to evolve human-like behavior of multiple agents by exploiting the Dawkins' notion of a meme and Universal Darwinism. Previous research has deve...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chen, Xuefeng, Zeng, Yifeng, Ong, Yew Soon, Ho, Choon Sing, Xiang, Yanping
其他作者: School of Computer Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/97924
http://hdl.handle.net/10220/18115
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Memetic multi agent system emerges as an enhanced version of multiagent systems with the implementation of meme-inspired computational agents. It aims to evolve human-like behavior of multiple agents by exploiting the Dawkins' notion of a meme and Universal Darwinism. Previous research has developed a computational framework in which a series of memetic operations have been designed for implementing humanlike agents. This paper will focus on improving the human-like behavior of multiple agents when they are engaged in social interactions. The improvement is mainly on how an agent shall learn from others and adapt its behavior in a complex dynamic environment. In particular, we design a new mechanism that supervises how the agent shall select one of the other agents for the learning purpose. The selection is a trade-off between the elitist and like-attracts-like principles. We demonstrate the desirable interactions of multiple agents in two problem domains.