Online feature selection for mining big data
Most studies of online learning require accessing all the attributes/ features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or the access to it is expensive to acquire the full set of attributes/f...
Saved in:
Main Authors: | Hoi, Steven C. H., Wang, Jialei., Zhao, Peilin., Jin, Rong. |
---|---|
其他作者: | School of Computer Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/98983 http://hdl.handle.net/10220/12629 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Online feature selection for mining big data
由: HOI, Steven C. H., et al.
出版: (2012) -
Online Feature Selection and Its Applications
由: HOI, Steven, et al.
出版: (2012) -
Online feature selection and its applications
由: WANG, Jialei, et al.
出版: (2014) -
Cost-sensitive online classification
由: Hoi, Steven C. H., et al.
出版: (2013) -
LIBOL : a library for online learning algorithms
由: Wang, Jialei, et al.
出版: (2014)