MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS

Ph.D

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: TEO JINQ HORNG
مؤلفون آخرون: ELECTRICAL & COMPUTER ENGINEERING
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://scholarbank.nus.edu.sg/handle/10635/166274
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id sg-nus-scholar.10635-166274
record_format dspace
spelling sg-nus-scholar.10635-1662742024-10-26T02:22:37Z MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS TEO JINQ HORNG ELECTRICAL & COMPUTER ENGINEERING Alioto, Massimo Bruno machine learning, VLSI, energy-quality scalability, voice activity detection Ph.D DOCTOR OF PHILOSOPHY (FOE) 2020-03-31T18:00:50Z 2020-03-31T18:00:50Z 2019-09-25 Thesis TEO JINQ HORNG (2019-09-25). MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS. ScholarBank@NUS Repository. https://scholarbank.nus.edu.sg/handle/10635/166274 0000-0002-4191-3610 en
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
language English
topic machine learning, VLSI, energy-quality scalability, voice activity detection
spellingShingle machine learning, VLSI, energy-quality scalability, voice activity detection
TEO JINQ HORNG
MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS
description Ph.D
author2 ELECTRICAL & COMPUTER ENGINEERING
author_facet ELECTRICAL & COMPUTER ENGINEERING
TEO JINQ HORNG
format Theses and Dissertations
author TEO JINQ HORNG
author_sort TEO JINQ HORNG
title MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS
title_short MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS
title_full MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS
title_fullStr MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS
title_full_unstemmed MACHINE LEARNING TECHNIQUES FOR HIGHLY ENERGY-EFFICIENT CIRCUITS
title_sort machine learning techniques for highly energy-efficient circuits
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/166274
_version_ 1821190882180726784