PRIVACY-PRESERVING COLLABORATIVE MACHINE LEARNING USING HOMOMORPHIC ENCRYPTION
Ph.D
Saved in:
主要作者: | JESTINE PAUL |
---|---|
其他作者: | ELECTRICAL & COMPUTER ENGINEERING |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://scholarbank.nus.edu.sg/handle/10635/243767 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | National University of Singapore |
語言: | English |
相似書籍
-
Privacy-preserving outsourced calculation toolkit in the cloud
由: LIU, Ximeng, et al.
出版: (2020) -
PUSC: Privacy-preserving user-centric skyline computation over multiple encrypted domains
由: LIU, Ximeng, et al.
出版: (2018) -
Encrypted data processing with Homomorphic Re-Encryption
由: DING, Wenxiu, et al.
出版: (2017) -
Privacy-preserving graph-based machine learning with fully homomorphic encryption for collaborative anti-money laundering
由: Effendi, Fabrianne
出版: (2024) -
A privacy-preserving outsourced functional computation framework across large-scale multiple encrypted domains
由: LIU, Ximeng, et al.
出版: (2016)