Some normal approximations for renewal function of large Weibull shape parameter

Communications in Statistics Part B: Simulation and Computation

Saved in:
Bibliographic Details
Main Authors: Cui, L., Xie, M.
Other Authors: INDUSTRIAL & SYSTEMS ENGINEERING
Format: Article
Published: 2014
Subjects:
Online Access:http://scholarbank.nus.edu.sg/handle/10635/87253
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-87253
record_format dspace
spelling sg-nus-scholar.10635-872532023-09-05T22:02:06Z Some normal approximations for renewal function of large Weibull shape parameter Cui, L. Xie, M. INDUSTRIAL & SYSTEMS ENGINEERING Normal approximation Renewal function Series truncation approximation Shape parameter Weibull distribution Communications in Statistics Part B: Simulation and Computation 32 1 1-16 CSSCD 2014-10-07T10:26:02Z 2014-10-07T10:26:02Z 2003-02 Article Cui, L., Xie, M. (2003-02). Some normal approximations for renewal function of large Weibull shape parameter. Communications in Statistics Part B: Simulation and Computation 32 (1) : 1-16. ScholarBank@NUS Repository. 03610918 http://scholarbank.nus.edu.sg/handle/10635/87253 000181843900001 Scopus
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Normal approximation
Renewal function
Series truncation approximation
Shape parameter
Weibull distribution
spellingShingle Normal approximation
Renewal function
Series truncation approximation
Shape parameter
Weibull distribution
Cui, L.
Xie, M.
Some normal approximations for renewal function of large Weibull shape parameter
description Communications in Statistics Part B: Simulation and Computation
author2 INDUSTRIAL & SYSTEMS ENGINEERING
author_facet INDUSTRIAL & SYSTEMS ENGINEERING
Cui, L.
Xie, M.
format Article
author Cui, L.
Xie, M.
author_sort Cui, L.
title Some normal approximations for renewal function of large Weibull shape parameter
title_short Some normal approximations for renewal function of large Weibull shape parameter
title_full Some normal approximations for renewal function of large Weibull shape parameter
title_fullStr Some normal approximations for renewal function of large Weibull shape parameter
title_full_unstemmed Some normal approximations for renewal function of large Weibull shape parameter
title_sort some normal approximations for renewal function of large weibull shape parameter
publishDate 2014
url http://scholarbank.nus.edu.sg/handle/10635/87253
_version_ 1776258715741061120