Deep representation learning for time series forecasting
Time series forecasting has critical applications across business and scien- tific domains, such as demand forecasting, capacity planning and management, and anomaly detection. Being able to predict the future yields immense value, allowing us to make downstream decisions with more confidence. Deep...
محفوظ في:
المؤلف الرئيسي: | WOO, Gerald |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/etd_coll/650 https://ink.library.smu.edu.sg/context/etd_coll/article/1648/viewcontent/GPIS_AY2020_PhD_Woo_Jiale_Gerald.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Unified training of universal time series forecasting transformers
بواسطة: WOO, Gerald, وآخرون
منشور في: (2024) -
Learning deep time-index models for time series forecasting
بواسطة: WOO, Jiale Gerald, وآخرون
منشور في: (2023) -
CoST: contrastive learning of disentangled seasonal-trend representations for time series forecasting
بواسطة: WOO, Gerald, وآخرون
منشور في: (2022) -
Time-series representation learning via temporal and contextual contrasting
بواسطة: Eldele, Emadeldeen, وآخرون
منشور في: (2022) -
Self-supervised learning for time series analysis : Taxonomy, progress, and prospects
بواسطة: ZHANG Kexin,, وآخرون
منشور في: (2024)