Towards trustworthy recommendation systems: Beyond collaborative filtering
Recommendation systems have been widely deployed in various scenarios and applications, such as e-commerce, social media, and streaming services. Recommendation systems have significantly influenced how we interact with various items in a wide range of platforms. They help users discover their prefe...
محفوظ في:
المؤلف الرئيسي: | LIU, ZHONGZHOU, Zhongzhou |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/etd_coll/660 https://ink.library.smu.edu.sg/context/etd_coll/article/1658/viewcontent/GPIS_AY2020_PhD_LIU_Zhongzhou.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Mitigating popularity bias for users and items with fairness-centric adaptive recommendation
بواسطة: LIU, Zhongzhou, وآخرون
منشور في: (2023) -
Beyond collaborative filtering: a relook at taskformulation in recommender systems
بواسطة: Sun, Aixin
منشور في: (2025) -
Towards trustworthy recommenders: building explainable and unbiased recommendation systems
بواسطة: Hu, Yidan
منشور في: (2024) -
Dual-view preference learning for adaptive recommendation
بواسطة: LIU, Zhongzhou, وآخرون
منشور في: (2023) -
Online collaborative filtering with implicit feedback
بواسطة: YIN, Jianwen, وآخرون
منشور في: (2019)