Information-Time Option Pricing: Theory and Empirical Evidence

With a stochastic time change from calendar-time to information-time, we derive a parsimonious option pricing formula with stochastic volatility as a risk-neutral Poisson sum of Merton's (1973) prices over the option's information-time maturity domain. The formula contains two unobservable...

全面介紹

Saved in:
書目詳細資料
Main Authors: CHANG, Carolyn W., CHANG, Jack S. K, LIM, Kian Guan
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 1998
主題:
在線閱讀:https://ink.library.smu.edu.sg/lkcsb_research/2261
https://doi.org/10.1016/s0304-405x(98)00009-9
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
id sg-smu-ink.lkcsb_research-3260
record_format dspace
spelling sg-smu-ink.lkcsb_research-32602016-11-01T08:38:20Z Information-Time Option Pricing: Theory and Empirical Evidence CHANG, Carolyn W. CHANG, Jack S. K LIM, Kian Guan With a stochastic time change from calendar-time to information-time, we derive a parsimonious option pricing formula with stochastic volatility as a risk-neutral Poisson sum of Merton's (1973) prices over the option's information-time maturity domain. The formula contains two unobservable parameters, information arrival intensity and information-time asset volatility, with stochastic volatility induced by random information arrival. When the information arrival rate intensifies, the option price increases and vice-versa. We test the formula in pricing, hedging, and excess profits capture empirically using currency and the S&P 500 futures options transaction data 1998-05-01T07:00:00Z text https://ink.library.smu.edu.sg/lkcsb_research/2261 info:doi/10.1016/s0304-405x(98)00009-9 https://doi.org/10.1016/s0304-405x(98)00009-9 Research Collection Lee Kong Chian School Of Business eng Institutional Knowledge at Singapore Management University Information-time Information arrival speed Option pricing Stochastic time change Stochastic volatility Business Finance and Financial Management
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Information-time
Information arrival speed
Option pricing
Stochastic time change
Stochastic volatility
Business
Finance and Financial Management
spellingShingle Information-time
Information arrival speed
Option pricing
Stochastic time change
Stochastic volatility
Business
Finance and Financial Management
CHANG, Carolyn W.
CHANG, Jack S. K
LIM, Kian Guan
Information-Time Option Pricing: Theory and Empirical Evidence
description With a stochastic time change from calendar-time to information-time, we derive a parsimonious option pricing formula with stochastic volatility as a risk-neutral Poisson sum of Merton's (1973) prices over the option's information-time maturity domain. The formula contains two unobservable parameters, information arrival intensity and information-time asset volatility, with stochastic volatility induced by random information arrival. When the information arrival rate intensifies, the option price increases and vice-versa. We test the formula in pricing, hedging, and excess profits capture empirically using currency and the S&P 500 futures options transaction data
format text
author CHANG, Carolyn W.
CHANG, Jack S. K
LIM, Kian Guan
author_facet CHANG, Carolyn W.
CHANG, Jack S. K
LIM, Kian Guan
author_sort CHANG, Carolyn W.
title Information-Time Option Pricing: Theory and Empirical Evidence
title_short Information-Time Option Pricing: Theory and Empirical Evidence
title_full Information-Time Option Pricing: Theory and Empirical Evidence
title_fullStr Information-Time Option Pricing: Theory and Empirical Evidence
title_full_unstemmed Information-Time Option Pricing: Theory and Empirical Evidence
title_sort information-time option pricing: theory and empirical evidence
publisher Institutional Knowledge at Singapore Management University
publishDate 1998
url https://ink.library.smu.edu.sg/lkcsb_research/2261
https://doi.org/10.1016/s0304-405x(98)00009-9
_version_ 1770570206916116480